Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 81(4): 673-682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37749443

RESUMO

Pulmonary fibrosis represents the advanced phase of diverse pulmonary ailments, and at present, a definitive cure for these ailments is lacking. Furthermore, underlying mechanisms causative of these ailments remain elusive. Macrophages are immune cells that resist external stimuli in the early stages after birth. These cells can polarize into the classically (M1) and alternatively (M2) activated macrophages. When stimulated owing to the presence of toxic factors, M1 macrophages produce several pro-inflammatory factors, which mediate the inflammatory injury response of the alveolar tissue. The secretion of diverse growth factors by M2 macrophages contributes to the pathogenesis of aberrant alveolar structural fibrosis and remodeling. The abnormal activity of M2 macrophages is considered a critical factor in the formation of pulmonary fibrosis. In this mini-review, to highlight the clinical implications of research studies, we summarize the role and therapeutic targets of polarized subtypes of macrophages in pulmonary fibrosis and the role of targeting macrophages for the treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Macrófagos/metabolismo , Pulmão/metabolismo
2.
Sci Total Environ ; 904: 166948, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37696404

RESUMO

Cadmium (Cd) contamination of rice is an urgent ecological and agricultural problem. Strontium (Sr) has been shown to promote plant growth. However, the effect of Sr on rice seedlings under Cd stress is currently unclear. In this work hydroponic experiments were used to assess the impact of Sr on rice seedling growth under Cd stress. The findings demonstrated that foliar application of 0.5 mg L-1 Sr had no discernible impact on the development of rice seedlings. However, Sr significantly alleviated growth inhibition and toxicity in rice seedlings when threatened by Cd. Compared with the Cd treatment (Cd, 2.5 mg L-1), the root length, shoot height, and whole plant length of rice seedlings in the Cd + Sr treatment (Cd, 2.5 mg L-1; Sr, 0.5 mg L-1) increased by 4.96 %, 12.47 % and 9.60 %, respectively. The content of Cd in rice decreased by 23.34 % (roots) and 5.79 % (shoots). Sr lessened the degree of membrane lipid peroxidation damage (lower MDA concentration) among the seedlings of rice under Cd stress by controlling the activities of antioxidant enzymes and GSH content. By changing the expression of antioxidant enzyme-encoding genes and downregulating the heavy metal transporter gene (OsNramp5), Sr reduced accumulation and the detrimental effects of Cd on rice seedlings. Our study provides a new solution to the problem of Cd contamination in rice, which may promote the safe production of rice and benefit human health.


Assuntos
Cádmio , Oryza , Humanos , Cádmio/metabolismo , Antioxidantes/metabolismo , Plântula , Estresse Oxidativo , Estrôncio/toxicidade , Estrôncio/metabolismo , Raízes de Plantas/metabolismo
3.
Sci Total Environ ; 905: 167167, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730048

RESUMO

Microcystins (MCs) are a class of biologically active cyclic heptapeptide pollutants produced by the freshwater alga Microcystis aeruginosa. With increased environmental pollution, MCs have become a popular research topic. In recent years, the hepatotoxicity of MCs and associated effects and mechanisms have been studied extensively. Current epidemiological data indicate that long-term human exposure to MCs can lead to severe liver toxicity, acute toxicity, and death. In addition, current toxicological studies on the liver, a vital target organ of MCs, indicate that MC contamination is associated with the development of liver cancer, nonalcoholic fatty liver, and liver fibrosis. MCs produce hepatotoxicity that affects the metabolic homeostasis of the liver, induces apoptosis, and acts as a pro-cancer factor, leading to liver lesions. MCs mainly mediate the activation of signaling pathways, such as the ERK/JNK/p38 MAPK and IL-6-STAT3 pathways, which leads to oxidative damage and even carcinogenesis. Moreover, MCs can act synergistically with other pollutants to produce combined toxicity. However, few systematic reviews have been performed on these new findings. This review systematically summarizes the toxic effects and mechanisms of MCs on the liver and discusses the combined liver toxicity effects of MCs and other pollutants to provide reference for subsequent research. The toxicity of different MC isomers deserves further study. The detection methods and limit standards of MCs in agricultural and aquatic products will represent important research directions in the future. Standard protocols for fish sampling during harmful algal blooms or to evaluate the degree of MC toxicity in nature are lacking. In future, bioinformatics can be applied to offer insights into MC toxicology research and potential drug development for MC poisoning. Further research is essential to understand the molecular mechanisms of liver function damage in combined-exposure toxicology studies to establish treatment for MC-induced liver damage.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Poluentes Ambientais , Microcystis , Animais , Humanos , Microcistinas/análise , Fígado/metabolismo , Microcystis/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Poluentes Ambientais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...